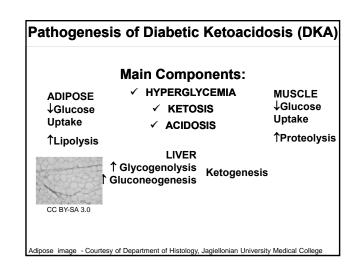
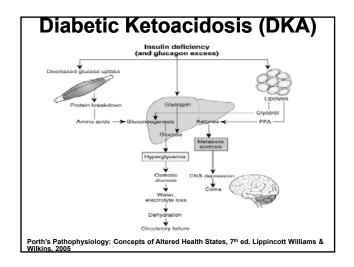
Endocrine Emergencies

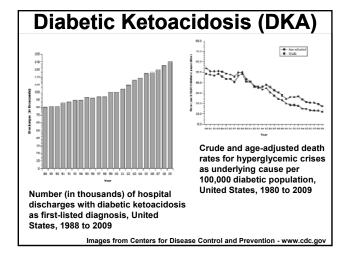

David Bradley, MD
Assistant Professor
Division of Endocrinology, Diabetes, and Metabolism
The Ohio State University Wexner Medical Center

Case #1

- 21-year old WF presents with dyspnea and abdominal pain. She has been complaining of thirst, polyuria, and blurred vision for a week while studying for final exams. She had a cold two weeks ago.
- HR 100, BP 100/60 supine, 90/50 upright
- Ph Ex: flat neck veins, fruity breath, diffuse abdominal tenderness

Case #1


- Glucose 320 mg/dl
- Bicarbonate 5 mEq/l
- Urine ketones 3+
- Sodium 129 mg/dl Diabetic Ketoacidosis
- Potassium 5.5 mmol/l
- WBC 12,000/ m³
- ECG: Sinus tachycardia
- What is the diagnosis?



Diabetic Ketoacidosis (DKA)

- Deficiency of insulin \rightarrow
 - Increased hepatic glucose production → Hyperglycemia
 - Increased lipolysis → gluconeogenic precursors (glycerol) to liver → gluconeogenesis → Hyperglycemia
 - Increased proteolysis → gluconeogenic precursors (amino acids) to the liver → gluconeogenesis → Hyperglycemia
 - Impaired glucose uptake in muscle and fat \rightarrow Hyperglycemia
 - Increased lipolysis → FFA → ketone production and ketoacidosis
- Glucagon excess → Increased glycogenolysis, gluconeogenesis, and ketoacid production

Porth's Pathophysiology: Concepts of Altered Health States, 7th ed. Lippincott Williams & Wilkins. 2005

Symptoms and Signs of DKA

- Polyuria
- Polydipsia
- Nausea and vomiting
- Abdominal pain
- Weakness
- Depressed sensorium
- Blurry vision
- Hyperventilation with Kussmaul respirations
- Fruity breath (Acetone)
- Shock
- Signs of dehydration
 - Signs and symptoms related to precipitants

DKA Physical Examination

- Vital Signs: Tachycardia, tachypnea (metabolic acidosis), hypotension, orthostasis
- Mental Status: Lethargy, coma
- · Dehydration: flat neck veins, dry mucous membranes
- Respiratory: Deep, rapid respirations (Kussmaul), fruity breath odor (acetone)
- Abdomen: Tenderness, guarding (may mimic acute abdomen)

Precipitating factors for DKA

- New-onset diabetes (20-25%) Endocrinopathies
- Noncompliance with insulin therapy
- Infection (30-40%) (pneumonia and UTI most common)
- Myocardial infarction
- Alcohol and/or drug abuse (Cocaine)
- Stroke
- **Acute Pancreatitis**
- Surgery

- - Acromegaly
 - Thyrotoxicosis
 - Cushing's Syndrome
- Trauma
- Drugs
 - Corticosteroids
 - · High dose thiazide diuretics
 - Antipsychotics
- Hot weather and insufficient water

Laboratory Features Diagnostic for DKA

- Serum glucose > 250 mg/dL (13.9) mmol/L)
- Arterial pH < 7.35 (venous pH <7.3)
- Serum bicarbonate < 18 mEq/L
- Serum acetone test positive
- Urinary ketone test positive (3+)

Additional Laboratory Features Consistent with DKA

- WBC count elevated (but < 25,000/mm³)
- Anion gap > 12
- PaCO₂ < 40 mm
- Na⁺ normal or low
 - Pseudohyponatremia
- Measured serum K+ high, normal, or low
- Triglycerides normal or elevated

DKA Additional Evaluation

- CBC with Differential
- Urinalysis with Culture and Sensitivity
- Chest X-Ray ("rule out pneumonia")
- Electrocardiogram
- If applicable:
 - Blood culture
 - Toxicology screen

Image from CDC Public Health Image Library

Essential Management of DKA

- Appropriate intravenous fluid resuscitation
- Continuous insulin administration
- Potassium replacement

DKA Treatment

- IVF: 0.9% Normal saline at 15-20 mL/kg/lean body weight per hour (typically 1 liter/hour) for the first 4 hrs
 - Change IV fluid to Dextrose 5% 0.45%
 NaCl when glucose < 250 mg/dL
- IV drip: Regular human insulin (100 U/mL) at 0.1-0.15 U/kg/hr (typically 5-10 U/h)
 - Expect glucose to decrease by ≥ 75 mg/dL/hr

DKA Treatment (continued)

- If hypokalemic (<3.3), give K⁺ before insulin bolus
 - Patient is whole body potassium depleted (300-600 mEq) due to gastrointestinal and renal (osmotic diuresis) losses
 - Hyperkalemia may occur due to insulin deficiency and acidosis (ICF to ECF)
 - Potassium will drop rapidly once insulin is given – promotes intracellular K⁺ entry
 - Initiate replacement when measured serum K⁺ < 5.4 mmol/L

DKA: Signs of Recovery and Transition off IV Insulin

- Venous pH ≥ 7.3
- Arterial pH ≥ 7.35
- Bicarbonate ≥ 18 mEq/L
- Anion gap ≤ 14
- Patient tolerating PO intake
- MUST give a dose of long-acting insulin SQ, 120 minutes before stopping IV insulin drip

Case #2

- 63-year-old WF presents with obtundation. Her daughter had not seen her in a week, but she had been complaining of thirst and blurred vision.
- PMH: "Sugar diabetes" for which she takes pills, HTN, arthritis
- P Ex: HR 100, BP 100/60 supine
- · Overweight, flat neck veins

Case #2

- Glucose 600 mg/dl
- Bicarbonate 24 mEq/l
- Urine ketone: Trace positive
- Sodium 145 mmol/l
- Potassium 5.5 mmol/l
- BUN 40, Creatinine 1.8 mg/dl
- · What is the diagnosis?

Hyperosmolar Hyperglycemia Syndrome

Hyperosmolar Hyperglycemia Syndrome (HHS)

- Typically complication of type 2 diabetes
- Older patients
- High mortality (up to 60%)
- Profound hyperglycemia (600-3000 mg/dL)
- Hyperosmolality (> 320 mOsm/kg)
- Severe dehydration
- Often present with impaired mental status or coma

Hyperosmolar Hyperglycemia Syndrome (HHS) **LIVER** MUSCLE **↑Gluconeogenesis ↓Glucose ↑Glycogenolysis** Uptake **HYPERGLYCEMIA HYPEROSMOLALITY KIDNEYS PANCREAS**

↓Glucose

Excretion

Comparison of DKA and HHS				
	DKA	HHS		
*Glucose	250 to 800	600 to >1000		
Osmolarity	Variable	>320		
**Urinary ketones	++	Trace + or negative		
**BHB	+	-		
pH	< 7.3	>7.3		
Bicarbonate	<18	>18		
**Anion Gap	>15	<15		
Precipitating illness	Yes	Yes		
Mortality	+	++		
Age	Young	Elderly		

*Two factors contribute to less severe hyperglycemia in DKA:

Earlier presentation of symptoms
Younger patients have a higher GFR and more glucosuria
** Absence of ketogenesis in HHS due to relative as opposed to
absolute insulin deficiency

Management of HHS

- · Intravenous fluid resuscitation
 - Isotonic fluid (0.9% NaCI) initially
 - Hypotonic fluid (0.45% NaCl) when BP stabilizes
 - Add Dextrose 5% when glucose ≤ 250 mg/dL
- Insulin administration
 - Similar to DKA

Author:

Mikael Häggström

Glucose

Toxicity

- · May wait until hemodynamically stable
- · Avoid over-correction of glucose

Case #3

- 45-year old WM with type 1 diabetes is admitted for R/O MI. Started on NPH BID and sliding scale Humalog QAC and HS.
- At 10:30 pm, patient calls nurse reporting that he feels "funny."
- At 11:00 pm, nurse finds patient diaphoretic and mumbling incoherently.
- · What is the diagnosis?

Hypoglycemia

Clinical Manifestations of Hypoglycemia

Neurogenic

Neuroglycopenic

- > Sweating
- > Hunger
- > Paresthesias
- > Tremor
- > Palpitations
- > Anxiety
- > Tachycardia
- > Hypertension

- > Warmth
- > Weakness
- ➤ Confusion
- > Drowsiness
- > Dizziness
- ➤ Blurred Vision
- > Focal Neurologic Sx.
- > Hypothermia

Glucose Regulation

Hyperglycemia

Hypoglycemia

↑ Insulin

↓ Insulin

↑ Glucagon

↑ Epinephrine

↑ Cortisol

↑ Growth

Hormone

Treatment of Hypoglycemia

- Do not overtreat !!
- PO route preferred
 - 10-20 gms and recheck in 15 minutes and repeat
- IV dextrose
 - 12.5 gms (1/2 amp D50)-full 25 gm
 - Double current dextrose infusion
- Glucagon (if no IV) in thigh or abdomen
 - 1 mg (IM, SQ, IV)
 - · Response takes 10 to 15 minutes
 - Followed by PO or IV glucose +/- protein
 - Nausea occurs in 60 to 90 minutes

Case #4

- A 32-year old WF presents to the ED with severe abdominal cramping, nausea and vomiting.
- PMH: Type 1 diabetes mellitus, Hashimoto's thyroiditis
- HR 110, BP 100/60 supine, 90/50 upright
- P Ex: Flat neck veins, diffuse abdominal tenderness, hyperpigmentation

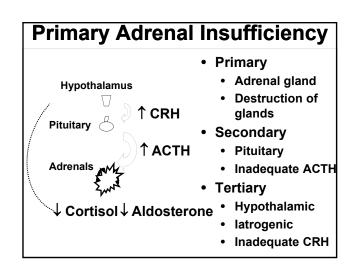
Case #4

- Glucose 95 mg/dl
- Bicarbonate 24 mEq/l
- Urine ketone: Negative
- Sodium: 128 mmol/l

Adrenal

• Potassium: 5.5 mmol/l Insufficiency

• ECG: Sinus tachycardia What is the diagnosis?


Normal adrenal function

- Adrenal Cortex
 - CORTISOL (glucocorticoid)
 - ALDOSTERONE (mineralocorticoid)
 - ANDROGENS (sex steroids)
- Adrenal Medulla
 - Catecholamines

Author: EEOC - cancer.gov

Adrenal Feedback **Hypothalamus CRH** Pituitary $^{\perp}$ **ACTH** Adrenals [] **Cortisol Aldosterone**

Addison's Disease

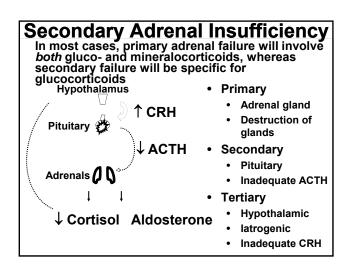
Source: U.S. National Archives and Records Administration

Genetic/Syndromic Causes of Primary Adrenal Failure

Typically presenting early in life (<1 yr)

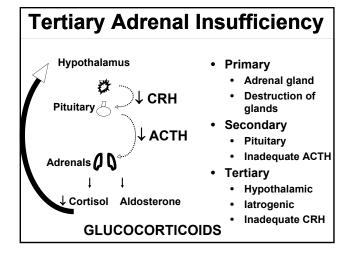
- CAH (steroid biosynthesis defect)
- Adrenal Hypoplasia Congenita (defect in adrenogenesis or adrenal development in 1st trimester)
 - Low cortisol and aldosterone

Typically presenting in childhood, and presentation is usually syndrome


- Triple A syndrome
 - ACTH resistant cortisol deficiency, achalasia, absent lacrimation
- APS Type I (APECED or autoimmune polyendocrinopathycandidiasis-ectodermal dystrophy)
 - Hypopara, mucocutaneous candidiasis, primary Al

Genetic/Syndromic Causes of Primary Adrenal Failure (continued)

- Presenting in adulthood
 - APS Type II (Type I DM, thyroid disease), ?non-classical CAH


Non-inherited Types

- Adrenal hemorrhage
 - Waterhouse-Friederichson syndrome
 - Meningococcal sepsis
 - Other pathogens (P. aeruginosa, S. pneumoniae, Staph aureus, Group B strep)
- HIV
- Autoimmune
 - Either in setting of other findings of APS II, or not
- Adrenalectomy

Secondary Adrenal Failure

- · Pituitary malfunction
 - Tumor destroying normal cells
 - Autoimmune hypophysitis
 - May be quite specific for loss of ACTH-producing cells
 - · Infiltrative diseases of pituitary
 - Histiocytosis X
 - Sarcoidosis

Features of Chronic Adrenocortical Insufficiency			
•Weakness, fatigue	100%		
•Weight loss	100%		
•Anorexia	100%		
Hyperpigmentation	92%		
•Hypotension	88%		
•Nausea, abdominal pain	56%		
•Salt craving	19%		

Treatment of Adrenal Insufficiency Glucocorticoids

- Glucocorticoids: Hydrocortisone (Short acting)
 - · Metabolized from cortisone to cortisol
 - Approx 12-15 mg/m² is replacement dose of HC
 - In most people, this is about 20-25 mg/day
 - Mimic the diurnal variation (2/3 steroid A.M.; 1/3 evening)
 - Evening dose given mid afternoon (e.g., 3pm) unless patient is night owl
 - · Other steroids (Long acting)
 - Prednisone ~5 mg/day
 - Dexamethasone ~0.5 mg/day (but rarely used for replacement)

Adrenal Crisis

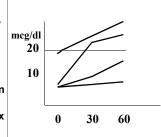
- Acute loss of adrenal function
 - · Acute loss of adrenals
 - Surgery
 - Hemorrhage/thrombosis
 - · Acute loss of pituitary function
 - Acute loss of steroid replacement

OR

- Acute stress in the setting of compensated chronic adrenal failure
 - Precipitating event (e.g., like DKA)

Features of Acute Adrenocortical Insufficiency (Adrenal Crisis)

- Hypotension
- Weakness (proximal muscles), confusion
- Nausea, vomiting, abdominal pain
- Hyponatremia/Hyperkalemia
- Dehydration, hypovolemia
- Hyperthermia
- Hypoglycemia


TREAT FIRST, AND DIAGNOSE LATER!!

Diagnosis of Adrenal Insufficiency

- ACTH stimulation test
 - 250 mcg IV x 1
 - Role of 1 mcg ACTH stim test??
- ACTH measurement (for differential dx)
- Random cortisol
 - Great test...when negative.
 - (e.g., a random cortisol of 30)
 - · Decent test...when positive.
 - · Often useless!

ACTH Stimulation Test

- Tests for <u>adrenal</u> insufficiency
 - Give IV bolus of 250 mcg ACTH
 - Measure cortisol at 0, 30, 60 minutes
- Normal response to >18 mcg/dl
 - Alternate endpoints in the literature:
 - Should be also 2-3x basal level
 - Increment of 9

Treatment of adrenal crisis

- Hydrocortisone: 200-300 mg/day (100 mg IV bolus)
 - · Patients with known adrenal insufficiency
 - Severe stress (e.g., sepsis, surgery, burn ICU)
 - Typically given on TID basis (100 mg TID)
- Dexamethasone: 8-16 mg/day (4 mg IV bolus)
 - · "Neurosurgical" doses may be higher
 - Not measured in serum cortisol assays, so can still perform ACTH stim test in acute setting
 - Lacks mineralocorticoid activity, so patients may require pressors

Treatment of Adrenal Insufficiency: Mineralocorticoids

- Replacement of mineralocorticoid needed if primary adrenal failure (e.g., adrenalectomy) but not for secondary
 - Florinef is synthetic mineralocorticoid (fludrocortisone)
 - Comes in only 1 size (100 mcg)
 - Most patients need 1 tab/day, but may need to titrate to symptoms or electrolytes
 - In patients on high dose HC (>50 mg/day), enough MC activity so that supplementation is not needed

Thyroid Emergencies

Hyperthyroidism vs thyrotoxicosis

- Thyrotoxicosis is the syndrome of too much thyroid hormone
 - Hyperthyroidism is overactivity of thyroid gland
 - · Always associated with thyrotoxicosis
- For example, ingesting large amounts of thyroxine causes thyrotoxicosis but NOT hyperthyroidism

Symptoms of Hyperthyroidism

- **Hyperactivity**
- **Nervousness**
- **Emotional lability**
- **Heat intolerance**
- **Sweating**
- **Tremors**
- **Palpitations**
- Weight loss
- Hyperphagia
- Diarrhea

- Oligo/amenorrhea
- Trouble sleeping
- Weakness
- Others:
 - Changes in the neck
 - Diffuse enlargement

 - Single lump (nodule) Eye changes (Graves disease ONLY)
 - Neck pain (suggests thyroiditis)
 - Post-partum state
 - Family history (?)

Weight loss, CV problems, weakness, r/o depression may be signs of apathetic hyperthyroidism in the elderly

Physical Exam

CC BY 3.0

Jonathan Trobe, M.D

University of Michiga

- General:
 - Anxious, fidgety
- Vital signs:
- · Tachycardia, Widened pulse pressure
- Warm and moist, "Velvety" texture, ?jaundice
- HEENT:
 - Lid lag and/or stare, Exopthalmos (Graves dz)
- Neck:
 - · Goiter or nodule, Bruit
- Cardiac:
 - · Tachycardia, hyperdynamic, ?A-fib
- Abdomen:
 - · Hyperactive bowel sounds
- **Extremities**
- Tremor, hyperreflexic, weakness

Hyperthyroidism vs. **Thyroid Storm**

It's not the numbers, it's the symptoms! (evidence for end-organ dysfunction)

Thyroid storm

THIS IS A MEDICAL EMERGENCY!!

- · Symptoms (exaggerated) include
 - Tachycardia (>140), high output cardiac failure and eventual circulatory collapse
 - Hyperthermia (>104 degrees)
 - Psychosis or Comatose state (CNS signs)
 - GI-hepatic dysfunction
- Mortality still 20-75%
- Numbers may not be much different from other thyrotoxic patients, so diagnosis is clinical

Thermoregulatory dysfunction		Cardiovascular dysfunction	
Temperature		Tachycardia	
99-99.9	5	99-109	5
100-100.9	10	110-119	10
101-101.9	15	120-129	15
102-102.9	20	130-139	20
103-103.9	25	>140	25
> 104	30	Congestive heart failure	
Central nervous system effe	cts	Mild	
Mild		Pedal edema	5
Agitation	10	Moderate	10
Moderate		Bibasilar rales	
Delirium		Severe	
Psychosis		Pulmonary edema	15
Extreme lethargy	20	Atrial fibrillation	10
Severe		Precipitant history	
Seizure		Negative	0
Coma	30	Positive	10
Gastrointestinal-hepatic dys	function	>45: Storm likely	
Moderate			
Diarrhea		25-45: Pending sto	orm
Nausea/vomiting		<25: Storm very unlikely	
Abdominal pain	10		
Severe	20	Sensitive but not specific	
Unexplained jaundice			_

Thyroid Storm

- · Often associated with a precipitating factor:
 - Long-standing untreated hyperthyroidism (ie. Graves)
 - · Thyroidal or non-thyroidal surgery
 - Trauma
 - · Infection or other body stressor
 - Acute iodine load (CT scan) (Jod-Basedow effect)
 - Medication related
 - Lithium
 - Amiodarone
 - Rare: Struma ovarii, hCG-secreting tumors

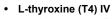
Treatment of thyroid storm

- Supportive care
 - Cardiopulmonary support as needed
 - Cooling, acetaminophen
 - Fluids, calories and vitamins

Treatment of thyroid storm

- · Acute treatment to lower T4 and control HR
 - Beta-blockers (Propranolol 60 mg every 4-6 hours) immediately
 - Start Thionamides ASAP PTU 200 mg q4hrs
 - Emergent thyroidectomy if contraindication
 - · SSKI, Lugol's, ipodate po.
 - Delay 1 hour after thionamides prevent iodine from being used as substrate for new hormone synthesis
 - Massive doses of free iodide inhibit organification (Wolff-Chaikoff effect)
 - Glucocorticoids (Hydrocort 100 mg IV q8hrs) also may be helpful
 - Dialysis or plasmapheresis as last resort

Hypothyroidism and Myxedema Coma


It's not the numbers, it's the symptoms! (evidence for end-organ dysfunction) (again)

Coma or decreased mental status Hypothermia Bradycardia Hypotension and Narrowed pulse Pressure Hypoventilation Hyponatremia Hypoglycemia Delayed reflexes Pericardial effusion Myxedema (Mucin deposits)

When to suspect myxedema?

- · Usually insidious onset
- Unable to wean patient from ventilator
- Decreased mental status for no apparent reason (especially in nursing home or isolated patients)
 - ? Not getting L-T4
- Meds
 - Amiodarone
 - Lithium

Myxedema Coma

- 200-400 mcg IV x1
- then 1.6 mcg/kg mcg daily
- triiodothyronine (T3) IV
 - 5-20 mcg x1
 - Then 5-10 mcg q8h
- Corticosteroid IV
 - Stress dose Hydrocortisone or Dexamethasone (until you're sure not adrenal insufficient)
- Supportive measures
 - Warming Blanket
- Unfortunately, mortality high (30-40%)

